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1. Introduction 

In this -paper we present a simple regression 

model for two -stage cluster samples. It is 

hypothesized that the model may be appropriate 

for many situations in which both the clusters 
and elements within the clusters are assumed to 
be sampled from infinite populations. As such, 

it is not a model for sampling from finite popu- 

lations, but may also be considered as a super - 

population model for two -stage samples taken 
from finite populations. 

The model of interest can be given as 

+ + u (i= 1,...,b; j =1,...,ni), 

or in matrix notation as 

+u 
where 1 is an nxl vector of l's, 

= 
is an nxl vector of 

observed dependent variables, 

X is an nxp matrix of observed predictor 
variables, 

and (pxl) are unknown parameters 

u is an nxl vector of unobserved random 

variables with 

E(ulX) = 0, 

Var(u1X) = - 

(1.1) 

V = )I + 

J O 
n1 

O Tub 

(1-py)I + PyXbXb, 

Jn 
i 

is an nixni matrix of l's, 

Our interest in this model lies in studying 
the estimation of is considered a nuisance 
parameter. Conditional on X, the weighted least 
squares (WLS) estimator of is BLU, but is rarely 
used because it depends on unknown parameters and 
is difficult to compute. More often, because of 
availability of computer programs and the 
familiarity of the technique, ordinary least 
squares (OLS) is used to estimate In this 
paper we wish to consider two aspects of the 
estimation of E. 

(1) Sometimes cluster samples are taken for 
convenience or economy, sometimes from necessity. 

What would be the effect on the variance of the 
parameter estimates if a simple random sampling 
procedure were used instead? In sampling termin- 
ology we wish to study the design effect for the 
OLS estimator of E. 

(2) Is OLS an efficient estimation procedure 
when model (1.1) holds? If OLS is extremely 
inefficient, then perhaps some form of approxi- 
mate WLS, using an estimate of py, should be 
considered as an alternative. 

For convenience, we restrict our results 
here to models with one or two predictor variables 
and consider the issue of design effects first. 

2. Design Effect for Simple Linear Regression 

When p =1, model (1.1) becomes 

x = + + . (2.1) 

(1.2) We assume that x has been transformed so that 
= O. Then the OLS estimator of is given by 

Po = , (2.2) 

and 

(1.3) Var(ßolx) = (x'x) -2x'Vx 

is the matrix of indica- 
1 tor variables identifying b the cluster from which 

each element was sampled, 

p is the intraclass correlation of the 
Y residuals around the regression line, 

-1 < 
y - 

From (1.2) and (1.3), it is clear that 

Var(yij) = c2 

Cov(Yij,Yik) Pyc2 (j #k) 

Cov(yi = 0 (i #k) 

Since the constant a2 appears as a constant multi- 
plier on all variance expressions, and will çancel 
from all ratios, for convenience we assume =1. 
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(2.3) 

Following Frankel (1971), we define the 
design effect ofßo, Deff(ßo), as the ratio of 
the variance of under model (1.1) to the var- 

iance of under the assumption of a simple ran- 

dom selection of element,.of the same overall sam- 

ple size. As Var(yij)s F1, Var(1301x) with simple 
random sampling is (x'x) -1. Therefore 

Deff(ß Ix) 
-1 

. (2.4) 
o -1 

More correctly, the expression (2.4) should be 
called a conditional design effect since the 
same x is used in both numerator and denominator. 

Without loss of generality, we may assume 
x'x = 1 in (2.4) and obtain 

Deff(0o1x) = x'Vx (x'x 1, x'1 0). (2.5) 

Substituting (1.3) for V in (2.5) yields 

Deff(ßolx) = 1 + -1)py (2.6) 

To make (2.6) more easily comparable with the 
usual expressions for design effects, it is con- 
venient to express in terms of the intra- 



class correlation, of the observed x. We 

first note that is the sum of squares of 

the b cluster totals of x, and can be expressed 

as b 
= ni x. . (2.7) 

i =1 

Following Murthy.(19.67),.we use the follow- 

ing definition of that is applicable for 

unequal cluster sizes: 

b ni 
n. 

(xij-x)- ( xik x) 
i=1 

b 

n(ni-1)oX 

(iv) If and py have the same sign, then 
Defff(ßox) > 1, while the converse holds if 

and py have opposite signs. 

(v) If either px or py is 0, then Deff(ß0 ) = 1. 

(vi) If > 0 and py > 0, then 

Deff60 x) < Deff(00) 

< Deff(x) . 

The last point is an important piece of theoretical 
evidence in support of Kish and Frankel's (1974) 

(2.8) observation that design effects for complex 
statistics (including regression coefficients) 
tend to be less than design effects for means. 

The fact that the design effects for means 
obtained from this model reduce to those used in 
practice for balanced samples is encouraging as 
is the fact that the empirical observation of 
Kish and Frankel is supported by the use of model 
(1.1). 

Unfortunately, at the time of this writing, 
we do not have empirical values of the design 
effects for single variable regressions with 
which to compare (2.13) or (2.11). Therefore, 
it is not yet possible to verify the applicability 
of these results to sample survey situations. 

3. Design Effects in a Two- Variable Regression 

The model we use here is 

x= +x1131 +x2132 +u (3.1) 

with x'l = 0, and = x2x2 = 1. The 

and 

Using the relationships = - and 0, (2.8) 

reduces to 

En2 x2 - 1 

2 En 

En. 
- 

which gives 

9 

EnixEn 
Substituting (2.9) in (2.6) gives 

Ent 
Deff(ßo 1 + Enl - i 

(2.9) 

(2.10) 

Var(n ) 

=1+ +ñ -1 pXpy(2.11) 

b 
n 

where n = E ni /b is the average sample size. 

i =1 

Noting that (2.9) is the design effect (see (2.13)) 

for estimating the mean of x, we can also obtain 

Deff(ßolx) 1 + (Deff(x) - . (2.12) 

We now wish to make the following points 
about Deff(ßox): 

(i) When the sample sizes are all equal, 

Deff(00 x) 1 + (n- . (2.13) 

(ii) To obtain the design effect for estimating 
under model (1.1), we let in (2.10) be 

1 and define the intraclass correlation 

for a column of its as 1. Then (2.13) 
reduces to 

Deff(p0) = 1 - 1 py , (2.14) 

which also shows why (2.9) is Deff(x). 

(iii)With equal sample sizes, (2.14) becomes 

Deff(µ0) 1 + (n -1)p. , (2.15) 

the well -known design effect for cluster 
samples.. 
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variance of the OLS estimator of (01,02)' is 

Var !X = (XIX)- 1X'VX(X'X) -1 , (3.2) 

20 

where X = . 

With the restriction = = 1, 

(3.3) 

1 r 

XIX 

and 
1 -r 

(XIX) 
-1 

- 
1 

1 -r -r 

The center matrix, X'VX, is 

. (3.4) 

2-2 
ni E ni xlix2i 

X' VX =(1 -p 
y 

(3.5) 

2- - 2 -2 
E ni xlix2i ni x2i 

Using (2.9), the diagonal elements of (3.5) can 

be easily represented in terms of the intraclass 

correlations p and p By generalizing (2.8), 

we define the intraclass "co- correlation" of 

and x2 as 



b 
n. ni 

E E (xlij-xl)(x2ik-x2) 
1=1 

pX1X2 b 
E n. 

i 
(n 

i=1 X1 X2 

which reduces to 

xlix2i - 
r 

pX1X2 Ent 

En. 

To evaluate (3.10), we used data from Frankel's 
(1971) three variable regressions.considering the 
variables pairwise. Values of,)Deff(xi) were 

(3.6) included in his appendix E. Values of r were 
available from Table 5.1. Values for p were 
obtained by assuming Deff(') 1 + (ñ and 
solving for py. As sufficient data were not avail- 
able for evaluating p12, we assumed it was equal to 
r. Only data from the six strata designs are used. 

Frankel considered 2 different three variable 
regressions. Since we used the variables in pairs 

(3.7) in 2 variable equations, (3.10) was evaluated 
twice for each regression coefficient. The results 
of our-calculations and Frankel's empirically 
obtained values are given below. 

We note that the sign of p does not depend on 

the sign of the covariance between the cluster 
totals, but on whether this covariance is larger 
or smaller than the overall correlation between 

and If If the cluster totals are uncorrelated, 

then 

-r 

Ent 
- 1 

En. 

To form the design effect for , we per- 

form the necessary matrix multiplication in (3.2), 
using (2.9) and (3.7) in (3.5), to find 

Deff(ß X)=1 + 1-r2 

2 (3 8) 

Ent 
-2rpX X +r 

=1 
2 2 (3.9) 

1 - r 
Due to the number of parameters involved, it is 

difficult to make general statements about the 

value of Deff(010IX). However, we can notice that: 

(i) if r = 0, then (3.9) reduces to the single 

variable design effect of (2.10); 

(ii) if > 0, then Deff(ß10IX) increases with 

p 
X1 

and p 
X2 

; 

(iii)Deff(6 1oIX) is larger if r and pX1X 
2 
have 

opposite signs than if they have the same 

sign. 

(iv) Deff(ß1o\X) becomes very large if r approaches 

1 or II 

Perhaps a more intuitive parametrization of 

Deff(ß10IX) occurs when it is expressed in terms 

of the design effects of xl and x2. By letting 

p 
12 

be the correlation coefficient between the 

block totals, we obtain 

Deff6101X) = 

(3.10) 

1+ 
Deff(x1)-2rp12)Deff(s1)Deff(x2)+r2Deff(x2) 

1 - r 
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Comparison of Theoretical and 
Empirical Design Effects 

Vari- 
ab le 

Deff(ßio) from (3.10) 
Deff(Bio) 

from Frankel 

6 1.067, 1.063 1.089 
7 1.092, 1.088 1.134 

12 1.089, 1.089 .984 
8 1.058, 1.057 1.093 

11 1.126, 1.128 1.080 
17 1.251, 1.252 1.432 

Variables 6, 7, and 12 were predictor variables 
in one equation while 8, 11, and 17 were included 
in the other equation. Except for variables 12 
and 11, the results from (3.10) are somewhat 
smaller but ordered approximately the same as 
Frankel's results. Variable 12 is clearly an 
anomaly for which we have no explanation at this 
time. From Frankel's data we found variables 
6 and 7 were highly correlated with each other 
and correlated only slightly with variable 12. 
Until results are obtained for three variable 
regressions, we do not know whether this explains 
the small design effect for variable 12. 

In this section and the preceding one, we 
have presented expressions for conditional design 
effects for regression coefficients. These were 
obtained by assuming the data follow a simple 
linear model appropriate for two -stage sampling 
from infinite populations. It is hoped that these 
results may also shed some light on the properties 
of regression coefficients obtained from finite 
populations. 

The comparisons in the above table are not 

totally discouraging. Further investigation is 

needed to determine whether the discrepancies 

are due to differences between two -variable and 

three -variable regressions or from some over- 

simplification in the assumed model. 

4. Relative Efficiency of OLS for Cluster 
Samples 

In this section we study the efficiency of 
OLS with respect to WLS when model (1.1) holds. 

We consider only single variable regressions and 

define the relative efficiency as 

Var(ßwIx) 
E (4.1) 



where is the second element of 

w 
(Z'V 

1Z)- 1Z'V 

with Z Var(ßw) is the (2,2) element of 
(eV-12)-i. . As before we assume x'l = 0 and 

= 1. The efficiencies given here are a 
pessimistic reflection of the efficiency of OLS 
since Var(OJ can never be achieved. 

It can be shown that 

E = [1-áDá21[1+(áN2-1)py] ' 

where = 

N = diag (n1,...,nb) 

D = diag 
1 +(n1 -1)py 1 

(1-pY) 

We note that 

0 < á2á2 = E < 1 

(4.2) 

is the between -cluster sum of squares of x, since 

= O. As such it is the length of the projection 
of x into the subspace spanned by Xi,. The vector 

22 contains the between -cluster information for 
regressing on x. If a2 0, all cluster means 

are 0 and x varies only within the clusters. 

Rather than discussing the properties of E , 

we give some graphs of it in simple situations. 
We choose to represent á2 as 

u 

where u'u 1 and k = Using this represen- 

tation, ku'Nu, where the quantity u'Nu 
a weighted average of the ni and must satisfy 

al< u'Nu < nb . (4.3) 

The restriction x'l = 0 translates to 0 

where = 

With this restriction on u, equality on the left 
in (4.3) can be attained only if n1 = n2 and on 
the right only if = 

We also point out that k is a linear 

function of the intraclass correlation of x via 

Px 
- + 

k = 
u'Nu 

which is obtained from (4.2) with = 
= The relationship between k ana 
simplifies to 

k 
1 + 

for balanced samples. 

(4.6) 

In figures 1 and 2 we g present graphs of E 
versus k (or for different values of py. 
Figure 1 contains results for 100 and 
Figure 2 for 50. Small values of py and k 
such as are commonly found in sample survey data 
were used in the calculations. 

If we define "reasonable efficiency" as 
E > 0.75, then with = 100 the efficiency of OLS 
could be unreasonably low if py > 0.05 unless px 
is very small. With 50, the values of E 
remain high until py > 0.10. Given the small 

values of py and commonly present in social 
science data, OLS should be reasonably efficient 
for most px and py when 50. With large 
values of ñ, some inefficient estimates may 
result if OLS is used consistently. 

We also point out that with large total 
sample sizes, /or b both large, then 
Var(S )and Var(ß )may both be acceptably small 
even hough the efficiency of OLS is low - making 
it not worthwhile to attempt a WLS analysis. 

In conclusion, with the presence of clustering 
as modelled in (1.1), it appears that OLS is a 
reasonably efficient estimator of a single 
regression coefficient for many parameter values 
commonly obtained in social science data. There- 
fore standard computer programs can usually be 
used for calculating point estimates of regression 
coefficients. The,sproperties of the estimated 
standard error of ßo provided by an OLS routine 
when model (1.1) holds have not been investigated 
at this time. 
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For the illustrations, we consider only balanced 
samples and use 

E 
(1-pY) Y) 

(4.5) 

(1-p Y(1-k))(1 
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1.0 

E* 

Figure 1 

E* vs. K(px) for Different Values of n 100 

A 

K:0 .05 .1 .15 .2 .25 .3 

p -.01 .04 .09 .14 .19 .24 .29 
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E* 

E* vs. 

Figure 2 

for Different Values of pY: 50 

K:0 .05 .1 .15 .2 .25 .3 

.03 .08 .13 .18 .23 .29 
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